Find the following limits

1. $\lim _{x \rightarrow 1} \frac{x^{2}+3 x-4}{x^{2}+2 x-3}$
2. $\lim _{x \rightarrow-\infty} \frac{x-3 x^{2}}{2 x^{2}-3 x+5}$
3. $\lim _{x \rightarrow 3} \frac{|3 x-9|}{3-x}$

Problem Two
10 Points

Let $f(x)=\frac{2}{x-1}$
a. Use the limit to find $f^{\prime}(x)$
b. Find the equation of the Tangent line at $x=2$

Problem Three

Find the derivatives of the following functions (do not simplify)

1. $f(x)=\sqrt[5]{3+x^{3}-2 x}$
2. $f(x)=\left(x^{-2}-4\right)\left(4+\frac{1}{x^{2}}\right)$
3. $f(x)=\frac{2 x-1}{3 x^{2}-2}$

Problem Four

Consider the implicit function given by the equation $-x^{2}+5 x y+y^{2}-7=0$
a. Find y^{\prime} at $(1,1)$
b. Find the equation of the Norma line to the graph at $(1,1)$

Consider the parabola given by the equation $y^{2}-2 y-8 x-31=0$. Find
a. The equation in standard form
b. The vertex
c. The focus
d. The directrix
e. Sketch the graph of the parabola (identify the vertex, the focus and the directrix).

The voltage of a certain thermocouple as a function of the temperature $T\left(\right.$ in $^{\circ} \mathrm{C}$) is given by $E=2.800 T+0.006 T^{2}$. The temperature is increasing at the rate of $1.00^{\circ} \mathrm{C} / \mathrm{min}$, how fast is the voltage increasing when $T=100^{\circ} \mathrm{C}$?

